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Tensile strength data of fused silica optical fibres was analysed without making any a 
priori assumptions regarding the flaw density distribution. Based on the strength data of 
short length specimens (0.05 to 0.6 m), predictions of the strengths of long length speci- 
mens (500 to 1100 m) were in good agreement with actual data. The advantages of a 
fundamental approach to the statistical analysis of failure of optical glass fibres compared 
with the more widely used Weibull statistics are discussed. 

1. Introduction 
The statistical analysis of strength data to evaluate 
the failure probability associated with the use of 
optical glass fibres is an important problem. The 
problem essentially consists of two parts: the 
acquisition of  reliable strength data and the 
development of a statistical model to describe 
failure. Ideally, the appropriate statistical analysis 
will permit the strength distribution function to 
be well defined from a relatively small number of 
tests. This distribution function can then be used 
to predict effects of size, stress state, etc. on the 
failure probability at various stress levels. 

The statistical analysis of fracture strength of 
optical glass fibres has generally followed the 
approach pioneered by Weibull [1-3]  who 
showed that if a specimen of surface area A con- 
tains a statistical distribution of noninteracting 
flaws, the probability of failure (~) is determined 
from 

1-~(S) = exp[--fA dA fSo g(S)dS] (1) 

where g(S)dS is the number of flaws per unit area 
with a strength between S and S + dS. Weibull 
then assumed an asymptotic functional form for 
g(S) 

= ( s - s ~ ]  m fs 
g(S) dS (2) 

: o  \ so / 

where Su is the lower limit on strength, So is the 
scale parameter and m is the shape parameter. 
By assuming this function, Equation 1 can be 
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integrated and the distribution parameters Su, So 
and m can be deduced from strength failure prob- 
ability data. 

Weibull's analysis has been extended to include 
the case where the strength of optical fibres is 
controlled by a bimodal flaw distribution [4-9] .  
In this case the strength data are fitted to two 
distributions of the form of Equation 2. Unfortun- 
ately, real flaw distributions on optical glass fibres 
are not necessarily best characterized by Equation 
2 and a more fundamental approach to statistical 
analysis is preferred. Such an approachhas recently 
been developed [10, 11] in which it was shown 
that by introducing the sample stress distribution, 
Equation 1 can be manipulated to obtain g(S) in 
terms of failure probability without assuming a 
priori that g(S) has a specific functional form. 
These solutions are quite straightforward for the 
uniaxial tensile test which is widely used for 
obtaining strength data for optical glass fibres. 
The purpose of this paper is to apply this funda- 
mental statistical approach to strength test data 
for optical glass fibres and to demonstrate its 
advantages over the more widely used Weibull 
statistics. 

2. Data analysis 
In a uniaxial tensile test the specimen fails at the 
maximum stress, Sin, and Equation 1 becomes 

f? ~(sm) = - l n  [1 -~,(s~.)l = A g(S)dS 
(3) 
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where A is the surface area under test and is equal 
to 27rrL with r being the fibre radius and L being 
the gauge length. Differentiating Equation 3 with 
respect to Sm gives 

1 d~(Sm) 
g ( s m )  - (4) 

A dSm 

Thus, for uniaxial tension the flaw density, g(Sm) , 
at any stress, Sin1, is proportional to the derivative 
of the ~ (Sin) against Sm curve at Sml. Once g(Sm) 
is determined, it can then be used to predict failure 
strengths for long length fibres as well as fibres 
under different modes of loading. For example, 
to make failure predictions for long length fibres 
in uniaxial loading, g(Sm) is simply integrated 
using Equation 3. For modes of loading other 
than uniaxial, where the stress distribution is more 
complicated, the integration equation becomes 
complex and the reader is referred to the paper 
by Evans and Jones [11] fo r  example of cases 
where bending stresses are present. 

Data analysis can be illustrated by examining 
data obtained for two groups (B and D) of optical 
glass fibres [4]. Both groups were drawn in an 
electric furnace and were polymer coated in line 
with the major difference being that Group D 
fibres were proof tested at 207 MPa. Group B 
fibres were tested with gauge lengths of 0.05 and 
0.61 m and Group D fibres with a gauge length 
of 0.05 m. The numbers of samples tested in each 
data set was 270,270 and 400, respectively. 

The data analysis procedure first requires that 
the test data be ordered and then the cumulative 
failure probability r be determined as a 
function of the fracture stress, Sm. The quantity 
~(Sm) [ - - - l n [ 1 - - r  is then evaluated 
and plotted as a function of Sin, see Fig. 1. Super- 
imposed in Fig. 1 is the cubic polynomial repre- 
sentation of the data. The fitting technique was 
designed to permit the curve to follow broad 
peaks in the data, while smoothing out localized 
oscillations. This was done because broad peaks 
often have a physical significance that relates to 
the flaw distribution but localized oscillations 
are generally a result of statistical variations that 
can cause gross fluctuations in the derivatives 
which impede the interpretation of the derived 
strength distributions. The derivatives of ~(Sm) 
that determine g(Sm) can then be deduced 
directly from the polynomials. Fig. 2 comprises 
the flaw density curves for the 0.05 and 0.061 m 
Group B and 0.05 m Group D fibres that were 
derived from the data  plots such as shown in 
Fig. 1. 

3. I nterpretation 
The flaw density curves (Fig. 2) contain several 
implications concerning the nature of the strength 
controlling defects and the size dependence of 
fracture strength. Both of the flaw density plots 
for the Group B fibre samples show two distinct 
flaw populations. The low strength flaw popu- 
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Figure 1 Typical plot of fail- 
ure probability against fracture 
strength; data are for 0.61m 
group B fibres. For clarity not 
all data points are shown at low 
failure probabilities. 
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lation is centred in each figure at about 850 MPa, 
while the high strength flaw population is con- 
tinuously increasing up to the maximum strength 
of the data (about 5400 MPa). On the other hand, 
the flaw density plot for the Group D fibres shows 
no low strength flaw population but instead there 
appears to be two high strength flaw populations. 
Although the Group D fibres were proof tested, 
it is quite unlikely that this eliminated the low 
strength population exhibited by Group B fibres 
since this population is centred about 850 MPa, 
while proof testing was at 207 MPa. Thus, the 
reason for the lack of the low strength population 
in Group D fibres must be due to some subtle 
difference in processing. 

To make strength predictions for long length 
fibres, the g(Sm) distributions in Fig. 2 must first 
be extrapolated. It is evident from Fig. 2 that 
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Figure 2 Strength distribution function, g(S m) against 
fracture strength for (a) 0.05 m group B fibres, (b) 
0.61 m group B fibres , and (c) 0.05 m group D fibres. 

there is some uncertainty in extrapolating these 
distributions which leads to a predicted range in 
strengths. The extrapolation of the g(Sm) function 
was carried out by extending the function from 
the data range to a strength level corresponding 
to about 100 MPa, after which the g(Sm) function 
was extrapolated linearly to 0, 0. The g(Sm) 
distribution could then be integrated using the 
trapezoidal rule over the strength range 0 to Sin- 
The predicted median strength [q~(Sm)=0.5] 
for a given long length was found by determining 
the strength value where the f g ( S ) d S  function 
was equal to (see Equation 3) 

f ;mg( s )d  S _ -- In (1 -- 0.5) 
2rL (5) 

The results of the long length strength predictions 
are summarized in Table I. For comparison the 
predictions based on Weibull unimodal and 
bimodal strength distributions are also given in 
Table I [4]. 

From Table I it is seen that the unimodal 
Weibull approach does not yield as accurate a 
failure prediction as the bimodal approach, as 
would be expected from this obviously bimodal 
data. The fundamental approach results in a failure 
prediction range that encompasses the experi- 
mentally measured value. These predictions 
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T A B L E I Comparison of predicted and actual fracture strengths at long lengths (L~) for q5 = 0.50 

Fibre data L~ (m) Predicted strength at L 2 (MPa) 

WeibuU unimodal WeibuU bimodal Fundamental 

Actual strength 
at L 2 (MPa) 

0.05mGroup B 498 2 203 169-213 179 
0.61mGroup B 498 36 240 145-192 179 
0.05mGroup D 1100 625 425 104-518 259 

illustrate one advantage in using the fundamental 
approach.  Namely, the unqualified use of  Weibull 

statistics for data extrapolat ion can lead to a false 
confidence that  the strength distribution para- 
meters derived in one strength regime are pert inent  
to  the entire populat ion [11].  This difficulty is 
largely eliminated with the fundamental approach 
since the strength range encompassed by the 
data is clearly indicated (Fig. 2) and the dangers 
inherent in extrapolating beyond" the regime 
covered by  the data become apparent.  Also, the 
Weibull approach places unnecessary restrictions 
on the functional form of  the distribution para- 
meters. Although this problem can be part ial ly 
counteracted by applying several piece-wise 
Weibull distributions, this type of  data analysis 
does not  represent a realistic mixing of  flaw popu- 
lations [12] .  This difficulty is largely eliminated 
by the fundamental  approach. 
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